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ABSTRACT 

In this paper, we present a recommended quantitative approach for analyzing the concept of isoperforrnance. 
The ideas outlined here rely upon the Bayesian version of model evaluation. We define models as hypotheses 
about the probabilities of subjects being categorized by a combination of predictor variables and criterion variables. 
From this foundation, a computational formula is derived whose value can be compared to a x2 distribution. For 
example, we are often interested in calculating the probability of a subject failing during some phase of flight 
training given that we have infonnation on certain predictor variables. We would like to ascertain whether the 
extra information contained in such predictor variables is useful. If it is useful, then it enables us to predict the 
probability of failure for any given student. This ability to predict a change in the probability of failure, either in 
the upwards or downwards direction, is very helpful to managers and decision makers in the training community. 
In addition, these techniques can help answer the question of whether a candidate for flight training can "trade-off" 
a high score on one predictor variable for a low score on a different predictor variable. ln particular, we would like 
to investigate the possibility of trading off different classes of predictor variables, say cognitive information 
processing variables and personality variables, and still achieve the same level of perfonnance. The maximum 
entropy principle is used as a systematic disciplined approach to [md parsimonious models. 
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INTRODUCTION 

In this paper, we present a recommended. quantitative approach for analyzing the concept of isoperronnance. 
An article in the journal Human Factors by Jones and Kennedy [1] prompted our current interest in applying 
isoperronnance to selection and training issues. 

The ideas outlined here rely upon the Bayesian version of model evaluation. We defme models as hypotheses 
about the probabilities of subjects being categorized by a combination of predictor variables and criterion variables. 
From this foundation, a computational formula is derived whose value can be compared to a X2 distribution. 

If this easily computed value falls into the upper 5% region ofax2 distribution with the appropriate degrees of 
freedom, then we reject the tentative model. On the other hand, if the value falls into the lower 95% region of the 
distribution, then we accept the model. Once a model is found that can be accepted, a few elementary rules from 
probability theory can be used to calculate the probabiUty of events involved in isoperronnance curves. 

For example, we are often interested in calculating the probability of a subject failing during some phase of 
flight training given that we have information on certain predictor variables. Alternatively, one can focus on the 
positive and say that we are interested in the probabUity of a subject passing flight training. We would like to 
ascertain whether the extra. information contained in such predictor variables is useful. If it is useful, then it 
enables us to predict the probability of failure (or passing) for any given student. This ability to predict a change 
in the probability of failure, either in the upwards or downwards din;)ction, is very helpful to managers and 
decision makers in the training community. 

In addition, these techniques can help answer the question of whether a candidate for flight training can 
"trade-off' a high score on one predictor variable for a low score on a different predictor variable. In particular, we 
would like to investigate the possibility of trading off different classes of predictor variables, say cognitive 
information processing variables and personality variables, and still achieve the same level of perronnance. 

THE DATA BASE 

The putpose of this paper is to provide the general quantitative foundations for analyzing isoperronnance. 
From time to time, we shall employ fictitious data to illustrate the formulas. The analysis of actual data using these 
techniques will be presented in a subsequent report [2]. The fictitious data does, nonetheless, give some general 
idea of the actual data base we will be analyzing in the future for the isoperrormance project. 

As part of another project called the Pilot Prediction System (PPS), we have constructed a rather ~arge and 
comprehensive data base consisting of various selection and training variables. A subset of this data base contains 
information on over a thousand Navy and Marine Corps candidates who entered pilot flight training from 1993 to 
early 1998. 

Scores on the various subtests of the Aviation Selection Test Battery (ASTB) and all the grades from the 
academic ground school (API - Aviation Preflight Indoctrination) portion of training prior to actual flight training 
are part of this data base. We will concentrate on one of the subtests from the ASTB, the Pilot Biographical 
Inventory (PBI), and the final overall grade from API called the Navy Standard Score (NSS). 

The raw score on the PB.~ is transformed into one of nine discrete categories so that PBI·= 1,2 ... 9 with 1 
being the lowest score and 9, the highest score. There are no candidates in the data base with a PBI = 1 so PBI 
will consist of eight categories. The API NSS is tranformed into one of six discrete categories, API = 1, 2 ... 6 
with, again, 1 representing low scores and 6 representing high scores from ground school. Thus, PBI and API 
represent the two predictor variables. 

,~.", 

One criterion variable will be used in the subsequent analysis. This criterion variable simply records whether a 
candidate failed some later phase of flight training after API. The crux of the analysis then centers naturally upon 
the probability of failure given information about two predictor variables. 
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CONTINGENCY TABLES 

As just mentioned, we will eventually analyze data from the PPS data base in our first assessment of 
isoperfonnance curves. The following schema will be used to set up the statistical derivations as detailed in later 
sections. Consider n cells that represent the n different ways that an event could happen. For us, these n cells 
represent the various combinations of categories for a given number of predictor variables and criterion variables. 

For example, a subject in the data base is classifted into one of eight categories on the PBI predictor variable, 
one of six categories on the API final grade predictor variable, and one of two categories to indicate success or 
failure in some phase of flight training. The total number of ways that a subject could be categorized given these 
three variables is n. Therefore, n = 8 x 6 x 2 = 96 different cells. The first cell would contain all those subjects 
with scores, PBI = 2, API = 1, ATIRlTE = 0; the second cell all those subjects with scores PBI = 2, API = 2, 
ATTRITE = 0; the jth cell all those subjects with scores PBI = 6, API = 4, ATTRITE = 1; and the 96th and last 
cell all those subjects with scores PBI = 9, API = 6, ATTRITE = 1. These n = 96 cellS can be arranged in any 
way that is convenient. 

One traditional and convenient way of arranging these n cells is a two-dimensional table of rows and columns. 
In this arrangement, the n cells are called a cross-tabulation or contingency table. Using our previous example, the 
n = 96 cells could be displayed as two contingency tables each with eight rows for the eight categories of the PBI 
and six columns for the six categories of the API final grade. The first.contingency table consists of all those 
subjects who failed some phase of flight training (ATTRITE :;: 0) while the second consists of all those subjects 
who passed all phases of flight training (ATTRITE = 1). 

The symbol N will be used to indicate the total number of subjects allocated to the n cells. The number of 
subjects in the ith cell will be labeled Ni . Therefore, 

n 

LNi=N. 
i=1 . 

Attached to each cell is a parameter, Qi, that represents the probability for a subject to fall into the ith cell. The 
whole pwpose of analyzing the contingency tables is to find values for the Qi that are a good fit to the empirical 
frequency data in the PPS data base. Each separate consideration of a set of potential Qi will be called a model 
and given the notation MA,MB,Me···. 

See Fig. 1 for a sketch of the salient points made in the above discussion. Two 8 x6 contingency tables are 
shown. The table on the left consists of all the subjects in the data base who failed some phase of flight training, 
while the table on the right consists of those subjects who passed all phases of flight training. Each cell is 
numbered, starting with cell 1 and ending with cell 96. The actual number of subjects falling into cell 29 is N29 • 

The probability for a subject to be categorized into cell 16 is Q16. The jth cell consists of the intersection 
ATTRJTE = 1, PBI = 6, and API = 4. There are a total of 

rt 

N= LNi = 1,120 
i=1 

subjects in the data base whq can be placed into one, and only one, of these 96 cells. 

The models, MA, MB, Me"', will embody various hypotheses regarding isoperformance curves. Such 
interesting hypotheses will concern independence or, the lack thereof, among the various Qi. Other hypotheses to 
be investigated concern an increase of the Qi with an increase in a variable score, and most especially, "tradeoff's" 
among certain of the Qi. Addressing such hypotheses will allow us to accept or reject the idea that subjects can 
achieve equal probability of success in flight training by trading off high scores on one predictor variable with low 
Scores on another predictor variable. We will always be guided by the principle of scientific parsimony, sometimes 
called "Occam's razor," to seek the simplest models that fit the data. 
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Figure 1: A sketch of a convenient arrangement of n = 96 cells into two 8 x 6 contingency tables. 

THE BAYESIAN FORMALISM FOR MODEL EVALUATION 

We flrst write Bayes's Formula for the posterior probability for any given model, say model MA. Then 

P(M ID I) = P(DIMA,I) P(MAII) 
A , P{DII) (1) 

where D stands for the observed frequency data and I stands for all the background assumptions. The posterior 
probability for model MA as conditioned on the troth of D and I is given on the left-hand side of Equation (1). 
The right hand side consists of the likelihood of the data conditioned on the truth of model M A times the prior 
probability of model MA. The likelihood times prior component in the numerator is divided by the probability of 
the data. The denominator is the sum of all the terms that could appear in the numerator and thus is a sum over all 
possible models. In the future, wesball drop reference to the background assumptions, I, to shorten the equations. 

The Bayesian approach actually compares the :ratio of posterior probabilities for any two models, say model 
MA and M B . this allows us to remove the complicated sum, P(D), from further consideration: 

P(DIMA) P(MA) 
P(DIMB) P(MB) . 

(2) 

Another assumption is usually introduced at this point. The prior probability of all models is considered to be 
equal. No favor or bias is shown for a model when compared with any other model. Under this assumption, the 
ratio of posterior probabilities for any two models reduces to the ratio of their respective likelihoods under each 
given model: 

(3) 

Now the question is, "How do we [md the likelihood of the data given a particular model?" To answer this'" 
question, we again invoke Bayes's Formula, but this time at a lower level. We now write down Bayes's Formula 
for the posterior probability for any given contingency table based on the data and a given model. The notation F j 

~--~----, 



is used for the jth contingency table: 

(4) 

The structure of Bayes's Fonnula is the same as that in Equation (1), but it is now expressed as the posterior 
probability for the jth contingency table as conditioned on the assumed truth of a given model. Observe that the 
denominator in Equation (4) is the very expression needed to solve Equation (3). 

Since the tenn P(DIMA) in the denominator of Equation (4) is the sum of all the terms that could appear in 
the numerator, it is written explicitly as 

K 

P(DIMA) = L P(DIMA, Fi)P(FiIMA). (5) 
i=l 

This is a sum over all K possible contingency tables that could arise from considering N subjects allocated to n 
cells. Equation (5) is also an axiom from probability theory and is given the name marginalization. 

The fInal step among these strictly Bayesian manipulations is to determine P(DIMA) and P(DIMB). This 
turns out to be a relatively simple problem because we are dealing with noise-free data. We assume that we have 
been careful enough to correctly record the various categorical variables so that we do not have to account for any 
attached error in the frequency counts for these variables. The likelihood for the jth contingency table is therefore 
equal to 1 when the frequency data match the numbers in the contingency table and 0 for any contingency table 
where the data do not match the numbers in the table. Symbolically, this means 

1 X P(FjIMA) 
P(FjID,MA) = K 1 . 

[ 1 x P(Fj IMA) J + [Li=~ 0 X P(Fi IMA) J 
(6) 

The denominator in Equation (6), the tenn we are seeking, therefore simplifies tremendously, reducing to 

(7) 

Likewise, 
(8) 

This completes the section on the Bayesian manipulations. The next section continues the derivation through to the 
point where we can write computer programs to analyze actual data. 

FORMULA FOR COMPUTING THE ACCEPTANCE OR REJECTION OF ANY GIVEN MODEL 

As the derivation for the actual fonnula used to compute whether to accept or reject a model is rather long and 
involved, we relegate the mathematical derivation to the Appendix. The interested reader may go there for all the 
details. Only the fInal fonnula is presented here as Equation (9). 

(9) 

As mentioned before, N is the total number of subjects allocated to the contingency tables. The observed relative 
frequency for the ith cell is given the notation fi and is equal to Nd N. Qi refers to any model for assigning the 
probabilities that we might propose to test. A superscript will be attached to the Qi to identify which model is 
being discussed so that Qf will mean the probabilities for each of the n cells under Model A. Likewise, Qf will 
mean the probabilities for each of the n cells under Model B, and so on. Equation (9) says that the number ,.' 
computed on the left-hand side, which must be positive, will be distributed according to the X2 distribution with v 
degrees of freedom We adopt the usual convention of rejecting any proposed model for the Qi if the value 
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computed on the left-hand side falls into the upper 5% region of the X2 distribution with the appropriate degrees of 
freedom. 

Numerical Examples 

In this section, we present some simple numerical examples to illustrate the use of Equation (9). Consider the 
situation of n = 8 cells, conveniently arranged into two 2 x 2 contingency tables. The first table consists of those 
subjects who failed some phase of flight training, while the second table consists of those who passed all stages of 
flight training. The total number of subjects in the data base is N = 100. Figure 2 shows these two tables with the 
actual frequencies, Ni, filled in for all eight cells. 

FAIL PASS 

PV1 PV1 
Low High Low High 

L~~ 24 L~tffiJ 23 
PV2 PV2 

High 12 11 23 High 13 17 30 

21 26 47 28 25 53 

Figure 2: Two contingency tables showing fictitious data for 100 subjects. Each table shows the two predictor 
variables labeled PV1 and PV2 broken down into high and low scores. The table on the left shows the subjects 
who failed some phase of flight training while that on the right shows those who passed all phases of flight training. 

There are two predictor variables, PVl and PV2, with two levels for each predictor variable called "Low" 
and "High." The left-hand side of Equation (9) says to compute 

(2 x 100) x 

[C~o) In (9~~0) + C~O) In(15~~00) + ... (1~~) In C7~~00)] . 
What is model MA so that we can substitute values for the Qt? It is up to us to choose whatever hypothesis we 
are interested in investigating. For starters, let's pick the simplest hypothesis we can think of, that is, that all eight 
Qi are equal. Now we can fill in the values for Qt based on this hypothesis: 

(2 x 100) x 

[ ( .09) ( .15) ( .17 )] .091n .125 + .151n .125 + .... 171n .125 

200 x (-.02957 + .027348 + ... + .052272) 

200 x .02784 

5.57. 

This value of 5.57 is compared to a X2 distribution with IJ = 7 df. The critical value that cuts off the upper 5% of 
this X2 distribution is 14.07. Therefore, 5.57 fits comfortably within this distribution and does not fall into the 
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rejection regioll We cannot reject model MA that says that the probability for a subject to fall into any of the 
eight categories is the same. 

The probability of failure is Q1 + Q2 + Q3 + Q4 = .50, which is the same as the probability of passing 
Qs + Q6 + Q7 + Q8 = .50. There is no effect due to the predictor variables either. There is the same probability 
of .25 of being categorized in the low or high level of either predictor variables no matter whether you pass or fail. 

Now consider a second example as shown in Fig. 3. N remains at 100 subjects. The value computed by 

FAIL 

PVl 
Low High 

Low [ffiJ7 12 
PV2 

High 4 6 10 

9 13 22 

PASS 

PVl 
Low High 

LOW~9 19 38 
PV2 

High 22 18 40 

41 37 78 

Figure 3: Two different contingency tables showing fictitious data for 100 subjects. Each table shows the two 
predictor variables labeled PVI and PV2 broken down into high and low scores. The table on the left shows the 
subjects who failed some phase of flight training while that on the right shows those who passed all phases of flight 
training. 

Equation (9) for this second example is 34.62, which falls into the upper 5% region of the X2 distribution with 
v = 7 df. Therefore, for these data, we must reject model MA that says all eight Qi = .125. 

What alternative model might fit the data better than model MA? A casual inspection of Fig. 3 will reveal that 
the number of attritions is much less than the number of graduates. Let model M B posit that the ratio of passing 
to failing is 4: 1 so that 

and 
QPail = Q1 + Q2 + Q3 + Q4 = .20. 

Otherwise, there are no further constraints on the Qi. Within the pass and fail groups we want the Qi to be evenly 
spread out. This foreshadows the idea of maximum entropy to be introduced later in the report. The specification 
of model MB is shown below in Table 1, along with the previous MA and a new model, Me, to be discussed 
shortly. 

The value computed by Equation (9) for model MB is 1.62. The degrees of freedom must be adjusted 
downwards by 1 since we have introduced a new constraint. The critical value of the X2 distribution for v = 6 df 
is 12.59, so we are well within the region where we would accept model MB. The data do not allow us to reject 
the hypothesis that P{Pass) = .80 and P(Fail) = .20. However, by accepting model MB, we still do not see any 
effects due to either of the predictor variables. 

For a third and final nl.!!fierical example, extending the insights from the first two examples, please refer to 
Fig 4. For these data, model MA has a value of 145.70, so it is clearly rejected. The revised thinking incorporated 
into model MB is not much better at 115.47 and it too must be rejected. 

We have to search for another plausible model that fits these new data. We will retain the hypothesis that 
QPass = .80 and QPail = .20 from model MB. Within each of the two groups there appears to be a strong ~1fect 
due to the predictor variables, PVl and PV2. If we now attribute a strong theoretical impact for low PVI and 
PV2 scores to predict failure and high PVI and PV2 scores to predict success, then a model like model Me as 
shown in Table 1 might wolk. 
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Table 1: The specification of the eight Qi values for models MA, ME, and Me. 

Cell MA ME Me 
Qi Qi Qi 

1 .125 .05 .14 
2 .125 .05 .02 
3 .125 .05 .02 
4 .125 .05 .02 
5 .125 .20 .08 
6 .125 .20 .08 
7 .125 .20 .08 
8 .125 .20 .56 

Sums 1.00 1.00 1.00 

FAIL 

PV1 
Low High 

Low rffi]7 2· 19 
PV2 

High 3 1 4 

20 3 23 

PASS 

PV1 
Low High 

LOW~6 9 
PV2 

High 10 58 68 

13 64 77 

Figure 4: The ftnal two contingency tables showing ftctitious data for 100 subjects. Each table shows the two 
predictor variables labeled PV1 and PV2 broken down into high and low scores. The table on the left shows the 
subjects who failed some phase of flight training while that on the right shows those who passed all phases of flight 
training. 

We examine in detail how all of the constraints aresatisfted by this model. First of all, L Qi must equall. 
The second constraint is that Ql + Q2 + Q3 + Q4 = .20 and Qs + Q6 + Q7 + Q8 = .80. Thirdly, low PV1 and 
PV2 scores are equal for the fail group, Ql + Q3 = Ql + Q2, and high PV1 and PV2 scores are equal for the 
pass group, Q6 + Q8 = Q7 + Q8. Notice that the rule for keeping as many Qi equal as possible is followed and 
that the ratio of 4:1 is followed as well as we move from the fail group to the pass group. 

Equation (9) produces a value of 6.84 for model Me. The degrees of freedom must be reduced by one again 
to account for the added constraint. The critical value demarcating the 95% and 5% regions of the X2 for 1/ = 5 df 
equals 11.07. This is a model we can accept. Table 2 sununarizes the three models examined and their status for 
the data as given in Fig. 4. 

Table 2: Summary of the. three models examined for the data in Fig. 4. 

Model X2 df Status 

MA 145.70 7 Rejected 
ME 115.40 6 Rejected 
Me 6.84 5 Accepted 

7 



:r 

CALCULATING THE PROBABILITY OF EVENTS 

Once we have found the most conselVative model that can be accepted, it is a relatively simple matter to find 
the probability for any event of interest. For example, it is usually of interest to calculate the probability for 
attrition as a function of the predictor variables. A particular case can be expressed symbolically as 

P(FaiIIPVl = low and PV2 = high) 

which is read as the probability of failing given that a subject scored low on predictor variable one and scored high 
on predictor variable two. 

Probability theory provides a well-known solution for this situation. Abstractly, the probability of event A 
conditioned on the truth of event B is written 

P(AIB) = peA n B) 
PCB) 

where peA n B) refers to the joint occurrence of events A and B. If the event A can be broken down into K 
mutually exclusive and exhaustive events, then the probability of the jth category of A is written as1 

(10) . 

(11) 

In the case that concerns us, A is the event of success in flight training and it is broken down into just K = 2 
categories, Pass or Fail. These two categories are mutually exclusive and exhaustive. That is to say, a given 
subject must be in one of these two categories and given that he or she is in one of the two categories, she or he 
cannot be in the other category. The conditioning information B is the score on the predictor variable. 

Equation (11) can now be rewritten simply as 

P(A1 n B) 
P(A1IB) = p(A1n B) + P(A2 n B) (12) 

If we let event A1 stand for fail, event A2 for pass, and event B for a low score on predictor variable one, then 
Equation (12) becomes 

il P· V I P(Fail and PVl = low) 
P(Fa I 1 = ow) = =-:::=--::--=-=:-:-c'----:------:--::-=-----'c:-=:-:----:---:-

P(Fail and PVl = low) + P(Pass and PVI = low) 

Our acceptable model will then provide us with the probabilities to substitute into Equation (13). 

Let us return to the first numerical example as depicted in Fig. 2. The numerator in Equation (13) is the 
intersection of the Fail cells with PVl =low, which is Q1 + Q3 = .25. At this point, we need fmd only the 
second term in the denominator. This is the intersection of the Pass and PVl = low cells, which is 
Q5 + Q7 = .25. Substituting these probabilities into Equation (13) yields 

.25 
P(FailIPVl = low) = 

.25 + .25 

.50. 

However, this probability is the same as P(Fail) not conditioned on any information, i.e., 

IThis is Bayes's Formula written in another way. 
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The extra information contained in the PVl score was of no help whatsoever. It is irrelevant information. 

The same tactic just outlined can be employed when conditioning on any number of predictor variables. Say 
that we are interested in the infonnation provided by the scores on both PVI and PV2: 

P{FaiIIPVl = low and PV2 = low) 

This is equal to 

P(Fail and PVl = low and PV2 = lOW) 
P{Fail and PVl = low and PV2 = low) + P{Pass and PVl = low and PV2 = low)' 

The cell that is the intersection in the numerator is Ql = .125, and the cell that is the intersection of the second 
term in the denominator is Q5 = .125. Therefore, 

P(FaiIIPVl = low and PV2 = low) = 
.125 

.125 + .125 

.50. (15) 

So, once again, the infonnation from both predictor variables was completely irrelevant or useless. Conditioning on 
this extra infonnation did not change the probability of failing from what we knew when we did not have this 
information, that is, P(Fail) = .50. 

What about the second numerical eXlU1lple as illustrated in Fig. 3? Does the extra information from the 
predictor variables help here? The same formula applies so all we have to do is plug in the correct values for the 
probabilities. In the second numerical example, model MB was found to be an acceptable model with the values 
Ql = .05 and Q5 = .20 

P(FaiIIPVl = low and PV2 = low) 
.05 

.05 + .20 

.20. (16) 

However, P(Fail) = Ql + Q2 + Q3 + Q4 == .20 as well. Here also the predictor variables are providing no useful 
information with regard to the probability of failing. 

In the third example, we fInally do observe an influence on the probability of failing by knowing the scores on 
the predictor variables. Refer back to Table I where the values of Ql = .14 and Q5 = .08 for model Me are 
listed. In this case, 

P{FaiIIPVl = low and PV2 = low) 
.14 

.14+ .08 

.64. (17) 

Knowing that a subject scored low on both PVl and PV2 raised the probability of failing from .20 to .64. The 
scores on these predictor variables are valuable information that permit us to materially change our assessment of 
failing. 

HOW TO FIND MODELS CONSISTING OF PRESCRIBED INFORMATION 

We have nearly completed the quantitative overview for the analysis that we intend to carry out for 
isoperl'ormance curves. One item still remains to be discussed, however. How does one manage to assign values to 
the Qi and thus arrive at plausible models? 

9 



In the numerical examples that were presen,ted earlier, this task was not so difficult. The assigned values could 
be intuited without too much difficulty. But we really require some disciplined, systematic method for assigning 
the Qi that doesn't depend upon someone's intuitive insight. In this fInal section, we provide such a method for 
assigning the Qi; a method that has a number of attractive features. The method is called the Maximum Entropy 
Principle (MEP), and it permits us to systematically generate only the models with the known information that we 
have consciously inserted and to avoid models with hidden assumptions about information we do not wish to insert. 

The mathematical derivation behind the MEP will not be presented in this report. A lengthy and thorough 
tutorial on this subject is available in Volume II of my textbook [3]. The treatment in my book is based entirely 
upon the seminal work on the MEP by Edwin T. Jaynes. Instead, we present here only the formulas that show how 
one assigns values to the Qi. 

Equation (18) below presents the simplest form of the :MEP where only one piece of information has been 
inserted into a model: . 

eA1A1(Xi) 

Qi = I:~ eA1A1(Xi) (18) 
.=1 

where >'1 is a constant value called a Lagrange multiplier. The value for A1 can be determined through numerical 
methods. We shall use only a very simple trial and error teclurique to fInd AI. Al (Xi) is the notation for a 
constraint on the n values of the Qi. As the argument Xi indicates, there exists a separate value for each of the 
Qi we are tIying to assign. The denominator in Equation (18) consists of the sum over all n possible cells, that is, 
the sum of each possible term that could appear in the numerator. These remarks about the MEP formula will be 
clarifIed by the numerical examples to follow. 

As the fIrst, and easiest example of the MEP, consider the case where Al = O. This is the case where we are 
inserting no information in the form of a constraint about the model. Actually this is not quite true. There is one 
piece of information that is universally present in the MEP. This is the constraint that all n Qi must sum to 1. This 
constraint is universally present because all probability distributions must sum (or integrate) to 1. The essence of 
the MEP is that the assignment of the Qi must have maximum entropy subject to the constraints imposed. When 
the only constraint is that the sum of the Qi must sum to 1, the distribution with maximum entropy is found by 
applying Equation (18) with A1 = 0: 

(19) 

(20) 

(21) 

n 

LeOXA1(Xi} = n (22) 
i=l 

(23) 

. This is exactly model MA that we assigned intuitively in the earlier numerical examples. 

Let us see how we could arrive at model MB using the MEP. We now introduce a constraint as one piece of 
information that we wish to insert into the assignment. That constraint is that P(Fail) = .20. Perhaps the easiest 
way of writing this constraint is to place a 1 in the fIrst four cells and a 0 in the last four cells as the values for 
A1(Xi). Table 3 shows the subsequent computation of the Qi using Equation (18). 
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Table 3: The:MEP assignment of the Qi for one constraint. This corresponds to model MB. 

Cell Al (Xi) exp(AlAl (Xi» Qi 

1 1 .25 .05 
2 1 .25 .05 
3 1 .25 .05 
4 1 .25 .05 
5 0 1.00 .20 
6 0 1.00 .20 
7 0 1.00 .20 
8 0 1.00 .20 

Al = -1.3863 5.00 1.00 

Table 4: The MEP assignment of the Qi for two constraints. This corresponds to model Me. 

Cell Al (Xi) A2(Xi) exp(AIAl (Xi) + A2A2(Xi» Qi 

1 1 1 1.75 .14 
2 1 0 .25 .02 
3 1 0 .25 .02 
4 1 0 .25 .02 
5 0 a 1.00 .08 
6 0 0 1.00 .08 
7 0 a 1.00 .08 
8 a 1 7.00 .56 

Al = -1.3863 A2 = 1.94593 12.50 1.00 

The MEP fonnalism can be extended straightforwardly to more than one constraint. An additional Lagrange 
multiplier, A2, and constraint function, A2(Xi), are placed into Equation (18). This results in 

eA1 Al (Xi)+A2A2 (x;) 

Qi == I:~ eAIA1(X;)+A2A2(X;)' 
.=1 

(24) 

We can use Equation (24) to find models with two pieces of infonnation inserted, and we can be sure that only 
these two pieces are involved. An example of such a model with two constraints was model Me. In this model, 
we entertained the hypothesis that a predictor variable was associated with success in training in addition to a 
given value for the probability of failing. Table 4 shows the numerical computations needed to assign the Qi 
values for this model ensuing from Equation (24). 

All three constraints are satisfied by this assignment to the Qi. The universal constraint that all Qi sum to 1 is 
satisfied. The constraint inserted by model M B that the probability of failing is equal to .20 is satisfied. The 
additional constraint inserted by model Me that low scores on both predictor variables lead to a higher probability 
of failing and that high scores on both predictor variables lead to a higher probability of passing is satisfied. The 
:MEP also tells us the correct degrees of freedom for the X2 test. It is v = n - number of constraints, which is ,. 
v = 5 for model Me. 

It is important to emphasize that this information and only this information has been inserted into the 
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assignment. This means that the infonnation entropy of the assignment given to the Qi in Table 4 is the maximum 
possible entropy given the constraints. There are other assignments to the Qi that satisfy all three constraints, but 
they possess an entropy that is less than the MEP assignment. 

SUMMARY 

We have shown that a well-known formula from infonnation theory can be derived from a Bayesian model 
evaluation approach to contingency tables. The value computed by this function of the cross-entropy is compared 
to a X2 distribution to judge whether a proposed model is acceptable. Such models refer to probabilities for a flight 
candidate being placed in a particular cell of a contingency table. Each cell represents an intersection of some 
number of predictor variables and a criterion variable. Simple numerical examples illustrating this concept were 
presented in this report. A follow-on report [2] will use the techniques developed here to analyze isopeIformance 
issues. In this practical application, PBI and API scores are used as the predictor variables and attrition in any 
phase of flight training is employed as the criterion variable. . 
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Appendix 
Derivation of Information Entropy Formula from Bayesian Model Evaluation 

At the stage where we left the derivation in the earlier section of this paper, we had to fmd the prior probability 
for any contingency table based on the truth of some given model. As we mentioned earlier, each model assigns 
some definite value to each of the Qi values, n in number. Each Qi, remember, assigns a probability for a subject 
to be categorized into the ith cell of the contingency table. The prior probability for the numbers appearing in any 
contingency table is based on the multinomial formula. The prior probability for any contingency table based on 
model MA is therefore, 

(25) 

In the same manner, the prior probability for the same contingency table based on a different model, model M B, is 

The symbol W(Fj) refers to the multiplicity factor; the number of ways that each contingency table could be 
formed without regard to the order that subjects are placed into the cells. 

We can now form the ratio of posterior probabilities for the two models as 

P(DIMA}P(MA) 
P(DJMB)P(MB) . 

Because we are assuming that the prior probabilities of the two models are equal, we can write the ratio of 
posterior probabilities as the ratio of likelihoods: 

= 

The multiplicity factor cancels in this ratio so that 

P(DJMA) 
P(DJMB) 

P(FjIMA) 
P(FjIMB) 

P(MAJD) QtN1Q~N2 ... Q:N" 
P(MBID) = QfN1QfN2 .. . Qft'" . 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

At this juncture, we bring in a classical theorem from non-Bayesian statistics, the asymptotic property of the 
likelihood ratio test [1]. This theorem states that a quantity, - 21n A, where A is a ratio of likelihoods as in 
Equation (31), will be d~stributed according to the chi-square (X2) distribution as N -t 002 . Jaynes's similar 
Entropy Concentration Theorem [2] can also be invoked. This kind of transformation carried out on the posterior 
probabilities of the two models will then be distributed as a X2 distribution, 

[ P(MAID)] 2 
-21n P(MBID) "'X (lid!). (32) 

2this use of .A is to be distinguished from its use as the Lagrange mUltiplier. 
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Substituting the right hand side of Equation (31) as the likelihood ratio, the transformation yields, 

(33) 

(34) 

(35) 

(36) 

. In Equation (35), we made use of the following identity 

lnx -lny 

-(lnx -lny) lny -lnx 

In (~) . 

If we let Qf stand for the very best model as a benchmark reference, then the Qi for model MB will be 
exactly the same as the observed frequencies, Nd N. Equation (36) now looks like this after making this choice 
for model MB, 

n (Qf) n (NdN) 2 LNiin QA = 2 LNiin QA . 
.=1 • .=1 • 

(37) 

Now we want to get Equation (37) into a form that expressly shows the frequencies, k Multiply and divide the 
right-hand side of Equation (37) by N to achieve 

~ N- (N-/ N) . ~ ( f- ) 2N x ~ ; In QA = 2N ~ Ii In Q~ . 
.=1 • .=1 • 

(38) 

The summation term in Equation (38) is well-known in information theory as cross-entropy. We will give it the 
notation H(f, MA) to indicate that it is the information cross-entropy of the actual frequencies with some model 
for the Qi, here Model A, 

(39) 

As our fInal statement, then, we see that any model can be accepted or rejected on the basis of its information 
cross-entropy and where it falls in relation to a X2 distribution 

2NH(f,M) '" X2 (v dl). (40) 
~ i> 

We will adopt the usual criterion for rejection of a proposed model on the basis of whether 2N H(f, M) falls into 
the upper 5% region of the X2 distribution. 

15 



REFERENCES 

1. Hoel, P.G. Introduction to Mathematical Statistics. 4th editioll John Wiley & Sons, 1971. 
2. Jaynes, E.T. Concentration of Distributions at Entropy Maxima. Papers on Probability, 

Statistics and Statistical Physics. ed. by R. D. Rosenkrantz, Kluwer Academic Publishers, 1989. 

I 

I 

I i 

i: : 
, ' 

16 



Reviewed and approved /..::? fi /1'9-. 

~~ R R STANNY, Ph.D. 
Technical Director 

This research was sponsored by the Office of Naval Research under work unit 6.2B994 03330/0126-7903. 

The views expressed in this article ~e those of the author and do not necessarily reflect the official policy or position 
of the Department of the Navy, Department of Defense, nor the U.S. GovernIPent. 

Reproduction in whole or in part is permitted for any purpose of the United States Government. 

~.'" . 



11 
t 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information. is estimated to average 1 hour per!esponse. including the time for reviewing instructions. searching existing data sOurces. 
gather,lng an? maintaining the data needed, and completl,ng and reviewIng the collectIon of information. Send co~ments r;1,arding this burden estimate or any other aspect of this 
collectIon of InformatIon. including suggestIons for reducing th,s burden. to WashIngton Headquarters ServICes. Directorate or Information Operations and Reports 1215 Jefferson 
Davis Highway. Suite 1204. Arlington. VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704·0188). Washington. DC 20563. 

1. AGENCY USE ONLY (Leave blank) 12. REPORT DATE 13. REPORT TYPE AND DATES COVERED 
1 OCT 1999 

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS 
Some General Quantitative Considerations for the Statistical Analysis of 
Isoperformance Curves 

6. AUTHOR(S) B994 03330/0126 
Work Unit 7903 

D. J. Blower 

7. PERFORMING ORGANIZATIONNAME(Sr AND AODRESS(ES) B. PERFORMING ORGANliATION 
REPORT NUMBER 

Naval Aerospace Medical Research Laboratory NAMRL-1406 
51 Hovey Road 
Pensacola F132508-1046 

9. SPONSORING I MONITOiuNG AGENCY NAME(S)' AND ADDRESS{ES) 10. SPONSORING I MONITORING 
AGENCY REPORT NUMBER 

Office of Naval Research 
800 N. Quincy Street 
Arlington, VA 22217-5660 

11. SUPPLEMENTARY NOTES 

Approved for public release; distribution unlimited. 

12a. DISTRiBUTION I AVAILAB.llITY STATEMENT 12b. DISTRIBUTION CdOE 

13. ABSTRACT (Maximum 200 words) 
In this paper we present a recommended quantitative approach for analyzing the concept of isoperformance. The ideas 

outlined here rely upon the Bayesian version of model evaluation. We defme models as hypotheses about the probabilities 
of subjects being categorized by a combination of predictor variables and criterion varia9les. From this foundation, a 
computational formula is derived whose value can be compared to a x2 distribution. For example, we are we are often 
interested in calculating the probability of a subject failing during some phase of flight training given that we have 
information on certain predictor variables. We would like to ascertain whether the extra information contained in such 
predictor variables is useful. If it is useful, then it enables us to predict the probability of failure for any given student. . 
This ability to predict a change in the probability of failure, either in the upwards or downwards direction, is very helpful to 
managers and decision makers in the training community. In addition, these techniques c.an help ansWer the question of 
whether a candidate for flight training can "trade-off' a high score on one predictor variable for a low score on a different 
predictor variable. In particular, we would like to investigate the possibility of trading off different classes of predictor 
variable. In particular, we would like to investigate the possibility of trading off different classes of predictor variables, say 
cognition information processing variables and personality variables, and still achieve the same·level of performance. The 
maximum entropy principle is used as a systematic disciplined approach to fmd parsimonious models. 

~.<i' 

, 14. SUBJECT TERMS 

Isoperformance, Bayesian model evaluation, Information theory, Maximum entropy 

I'" SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY ClASS/FICA TlON 
OF REPORT OF THIS PAGE OF ABSTRACT 

l UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 

NSN 7540-01-280-5500 
17 

1S. NUMBER OF PAGES 
26 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

SAR 

Standard Form 298 (Rev. 2-89) 
PreSCrIbed by ANSI Std. Z39·18 
298·102 


